| ‘ " REPORT DOCUMENTATION PAGEH

FORM APPRCVED
‘OMB No. 0704-0188

Public reportng burden for this collection of information i3 estimated to averaga 1 hour par response fifciuding the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data ngaded and completing and reviewing the collection of Informatiol. Send comments regsrding thia burdan sstimate or any othar aspact of the collection
of information. in¢luding suggestions for reducing the burdan to Washington Headquartars Services, Diractorate for Information Oparations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arington. VA 22202-4302 and to the Office of Management and Budgest, Papsrwork Reduction Project {0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE OF REPORT

5. FUNDING NUMBERS

, Modulan. cﬂ'.foleme')iaﬁm of efficrent SA% - cgwddrg»‘? checkoy Grant No. NOOOIH- 94~ 1-0962

6. AUTHORIS] Py | ole g(A. Walken

I
|
|
H

I
|

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES)
Novth Canolina ALT Stake Univess:
:De,f;r.% Electyica) Enﬁinw'dn?/
Greensboro, NC 27411

8. PERFORMING ORGANIZATION REPORT
NUMBER:

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Kboearch :

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER:

11. SUPPLEMENTARY NOTES:

12a. DISTRIBUTION AVAILABILITY STATEMENT

UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT {(Maximum 200 words}

She B,,?m code is te leasr vedundank

T 0960625 16

mahc code avou Lable jcw

dibocking, Single amd unidieckional multibik eryors. n s vepal, 4
mm{élj’% Oawﬁm‘?' CJC]CIM Checkend]Q/ the %m wde s Fiw@«jéﬂ‘?

8 15. 'NUMBER OF PAGES:
o 7s) ,

16. PRICE CODE

OF REPORT:] THIS PAGE OF ABSTRACT

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION OF | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT

DTIC QUALITY LivsrEcTED 1

STANDARD FORM 228 (REV 2-89)

Progress Report

Grant No: N00014-94-1-0462
Office of Naval Research

Self Checkine State Machime-Realization in CMOS

Reporting Period : January 1 --- March 31, 1996

Dr.P.X. Lala
Principal Investigator
Dr. A. Walker
Co-Principal Investigator
Department of Electrical Engineering
North Carolina A&T State University
Greensboro, NC 27411.

Modular Implementation of Efficient Self-Checking Checkers for the Berger Code

The Berger code is the least redundant systematic code available for detecting
single and multibit unidirectional errors [1]. The number of check bits, £, for a
conventional Berger code is determined by the equation : k= flogz (1+1)1,where I is the
number of information bits. There are two encoding schemes, B0 and B1, used to encode
information in conventional Berger code. In the B0 encoding scheme, the check bits are
the binary representation of the number of 0’s in the information vector, whereas in the
B1 encoding scheme, the check bits are the bit by bit complement of the binary
representation of the number of 1’s in the information vector. If the number of
information bits is related to the number of check bits by the relationship, I = 2% - 1, then
the resulting code is called the maximal length Berger code.

In this report, a technique for designing efficient checkers for Berger codes is
presented. Figure 1 shows the block diagram of the checker. Information bits are passed
through the check bit generator. The resulting check bits are then compared to the
predicted check bits by a two-rail checker. If there is no fault present in the two-rail
checker or the check bit generator, the outputs of the checker are complementary (i.e. 01
or 10), otherwise they are 00 or 11. We will focus only on the implementation of the
check bit generator (CBG) circuit. The CBG is designed assuming the B1 encoding
scheme for non-maximal length Berger codes, and the BO encoding scheme for maximal
length Berger codes. The basic building block of the proposed CBG is a 4 input /s
counter [see Figure 2]. This 4-input 1’s counter receives four inputs and generates at its
three output bits the binary representation of the number of 1’s in the four input bits.

Two other types of I’s counters, having 2 and 3 inputs, are used to realize
checkers for variable length information bits. Figure 3 shows the schematics of these
counters. A 1’s counter of any size can be constructed from the basic counters. For
example, a 5 input 1’s counter can be constructed from a 3 input 1’s counter, a 2 input 1°s
counter and a-standard 2-bit adder.

A CBG is implemented with two 1’s counters and an addition array. The
information bits are partitioned into two blocks I;and I+ . The I, block contains (/2] bits
and the I+ block contains I- [/2] bits. The size of the 1’s counters needed to implement a
CBG depends on the number of bits in blocks, I, and I« . If the number of information bits
in a block are 4 or fewer, an appropriate 1°s counter (shown in Figs. 2, 3(a) and 3(b)) in
conjunction with the appropriate addition array are used to complete a design. However,
if the number of bits in a block is greater than 4, the block is partitioned into sub-blocks.
The partitioning process is continued until a sub-block can be implemented with a pre-
designed 1’s counter and an addition array. The counter corresponding to a sub-block is
used as a building block to implement larger size 1’s counters. The number of 1°s in
blocks I;and I+ derived by partitioning I information bits is represented by vectors r and
r*, respectively. The number of bits in r and 1* is log, (fI/Z'l +1) and log, ((I- [1/2]) +1),
respectively. The check bits, &, for I information bits is the sum of rand r*, and is
derived by adding two bits at a time as shown below:

k = kn kn.1 k3 k2 k] ko
If there are 2" (where n is an integer) inputs to a block, the block produces a vector
r (or r¥) whose most significant bit is considered to be a special most significant bit
(SMSB). If the SMSB of r or r* is 1, 1t is the only ‘1’ present in the vector, and a carry is
not produced when r and r* are added.

To illustrate, let us assume:

I=7;

then I, = 4; and I« =3;
length of r: 3 bits = ra 1 1
length of r*: 2 bits = r*; r*

If a vector consisting of all 1°s is present at the inputs to the 4 input counter (I; =
4), the most significant bit of r, i.e. rp, will be 1 and r; and ro will be 0. Irrespective of the
values of r*; and r*y, summing them with r; and ry will never produce a carry.

The two least significant bits of vectors r and r* (i.e. ro,t*,r1, and r*,) are grouped
together in a set called a primary group. A 2-bit adder is used to sum these bits. The
outputs of the adder become the least significant check bits, i.e. k; and kg. The carry-out
generated during this addition generally propagates to a secondary group. In some cases,
the carry becomes the check bit k,. To illustrate, let us assume:

1= 10110.I; =101; I+ = 10; therefore, r = r; 1y = 10; r* = r*; r*¢=01.

The check bits, £, are obtained by adding r and r* as shown in Figure 4. The
special 2-bit adder is a derivative of the standard 2-bit adder used in all other CBG
designs (Figure 5(a)). Since rir*; = 11 does not occur in a CBG design for (Lk) = (5,3),
gates with bits r;r*; in Figure 5(a) are discarded to form the special 2-bit adder (Figure
5(b)). The special 2-bit adder is used in a sub-block which has five information bits.
Otherwise, as a default, the standard 2-bit adder is used to sum the bits in the primary

grouping.

A secondary group, unlike the primary group, may contain as many as 4 bits or as
few as 1 bit. Maximal length information bits (1= {7,15,31,....}) will result in an odd
number of bits in the secondary group whereas non-maximal length information bits will
result in an even number of bits. The type of adder to be used to sum the bits of the
secondary group is dependent not only upon the number of bits in the secondary group
but also whether or not the most significant bit of r (or r*) is a SMSB. When the
information bits is non-maximal, the most significant bit of r (or r*) may or may not be a
SMSB. However, the most significant bit of r is always a SMSB if the information bits
are maximal. :

We will consider several cases with different numbers of bits in the secondary
group. For simplicity, only a single secondary group will be considered.

a

Y

Cése 1: One bit in the secondary group.

Cp

Note that this case results only when I=7; therefore, 1, is a SMSB. The carry
circuit of the standard 2-bit adder (Figure 5(a)) is modified to accommodate r; and is
shown in Figure 7. The sum circuit of the modified 2-bit adder is the same as that of the
standard 2-bit adder. The CBG block diagram for (Lk) = (7,3) is shown in Figure 6. To
illustrate, let us assume:

= 1111101; I, = 1111; I» = 101; therefore,
r=100; r* =10; k= 110.

Case 2: Two bits in the secondary group.

Cp

rnpirn Io

r*; [1¥1 1%
ks ks ki ko

If bits, r; and r*,, are SMSB’s[Figure 8], a Type I adder is used to generate check
bits, k; and k. Otherwise, a full adder is used. Figures 9 and 10 show the realizations of
the Type I adder and the full adder, respectively.

Let us illustrate Case 2 by designing a CBG for (L) = (11,4):

=6 (I—I/Z-l) bits and I« =5 (I- 2]) bits; therefore r =r; 1y 1o; 1* =¥y r*; 1%¢;
and k= k3 kz k1 ko.

The implementation of the CBG for (L) = (11,4) is shown in Figure 11. Note that
neither r, nor r*, is a SMSB; therefore a full adder, rather than a Type I adder is used to
sum the bits in the secondary group.

Case 3: Three bits in the secondary group.

This case results only when I = 15; therefore, r3 is a SMSB[see Figure 12]. The
full adder’s carry circuit is modified to generate check bit k3. The modification of the full
adder’s carry circuit is shown in Figure 13.

Case 4: Four bits in the secondary group.

If both bits, r3 and r*3 are SMSB’s, then a Type II adder is used[Figure 14].
Otherwise, a parallel 2-bit adder is used[Figure 15]. The circuit realization of the Type II
adder is shown in Figure 16. The parallel 2-bit adder consists of two 2-bit adders; and
three 2-to-1 multiplexers; with one of the adders assuming a carry-in of 1. The select lines
of the multiplexers are driven by the carry-out of the primary group. For instance, the
outputs of the 2-bit adder (with C, = 1) is chosen when the primary group produces a
carry-out of 1. The block diagram of the parallel 2-bit adder and the realization of the 2-
bit adder (with C, = 1) used in the parallel 2-bit adder are shown in Figures 17 and 18,
respectively.

If a secondary group has 4 bits, it is treated as a primary group. The selection of
adder modules needed to add bits in subsequent secondary groups is chosen using the
same guidelines described in Cases 1 - Case 4. However, two special cases may arise
when more than one secondary group are considered:

Case 5: One bit in the secondary group?2.

Cs
I3{3 Ip (It Ip
r¥3r*y|r*; ¥

ks ks ky ki ko

In this case, the parallel 2-bit adder configuration is modified to accommodate the
SMSB, 15. In the parallel 2-bit adder[Figure 17], the standard 2-bit adder is replaced by
the modified 2-bit adder discussed previously in Case 1. Bit, 14, becomes an input to the
modified 2-bit adder.

Case 6: Two bits (both of which are SMSB’s) in the secondary group2.

Cs
Ts ;3 Ip | To
r*4 I’*3 I'*z I'*l I‘*o

ks ks ks ko ko ko

Since 14 and r*; are SMSB’s, a Type 11T adder [Figure 19] is used to generate
check bits ks and ks Note that in this case, carries, Co and C;, generated by the parallel 2-
bit adder, propagate to the subsequent secondary group. Otherwise, the procedure given
in Case 2 requires the full adder to sum bits Cs, 14, and r*,. Figure 20 shows a block
diagram of the CBG design for (Lk) = (32, 6).

Infor-
mation
bits

Check
Bits

Check

bit Two ____>
o . k bits Checker
enerator
Rail _____> Qutputs

. Checker
k bits

Figure 1

o

ofeplople |

ol

©|
»

olof =]

°|

N out3
// . o
=) > '
i—\ | ‘
s B4
—)
-/
1 —
1

Figure 2 4 input 1’s counter

gk

|

A ———————————r—
out2
B —_j

A

B

out1

—
=)

Figure 3(a) 2 input 1’s counter

U C

:

slsisle

Figure 3(b) 3 input 1’s counter

outt

out2

1 13 mput 1 i
01 I's ~ . 0
1 ___jcounter
y Special —1
2-bit 1
1 —12imput| O adder
0o I's
counter
1
Figure 4
kO
C Ik
k1
a /N |

Tl

“1 1 P00 f00 0 PO pf Tirt 100 ¢ T 0 0 11 170 10 10 0

Figure 5(a)

K1

KO

=

1 rMro 1 0 ro r*O r1

T

r*1

Figure S(b)

111

0 0 r1

0 0 10 0

4

Modified
2-bit
adder

> mput | O
I's
7 counter
information
bits I"—
3
> input
* I's
counter
Figure 6
r0
r*0 :
gl [—
7.
ro
r*0 l
r1
?2— 1
r1 I
r 1
”
r2
ri
r*1
r0
r0

Figure 7

jsjslule
H

k2

8
information
bits

k3

2
4input|” _
1's T
1 T I
counter - ype
0
T -
X Std
4 mput X
1,5 2-bit
r* adder
counter 1
T ES
0
Figure 8 -
k2

Inn

2 P2 2 2 oM 00 72 or2 oMo opo o2 12

~

L]

—

Figure 9

-

adder { L

k3

N

Cp r2

Cp r2

|

2 2 Cp

2 2 Cp r2 r2 Cp

Figure 10

2

31n.
I's 2
I > count. _L St)
T 2-bit
) J— adder
3.
I's ‘J—
. 11 - count. r; Full | k3
information) dd
bits | aceer k,
3.
[T Std ,
Ibt ———L Spec. 2-bit 1\1
I . > count 2-bit adder k 0
!] f adder
21n.
I's j
count.
Figure 11
I b
J
Mod. k
j [=8 I 3
r 2 full
15 k
. : adder 2
information l
bits 2-bit k 1
:> [=7 adder
r* k 0

Figure 12

O

I

=D

r ; - : Lk
Type II K
=8 « adder [~ 3
r r
16 Lk 5
information
bits r*
2
_ Std. | ok
:j> I8 2-bit !
adder k
0
Figure 14
f 3 r] k4
2 Parallel
B 2-bit k
j Ir— = r;‘ adder >
30 — k
)) 2
information
bits J r*
_ Std. .k
j 13 2-bit :
adder k 0

Figure 15

<,

k3
1?,

L [
]

|

T T

3 M3 1212 313 Cp Cp 212 13 3 Cp 13 3 Cp 2 r'2 Cp 12 Cp 12 P2 Cp r2 12

Figure 16
9 Tc 1% mux C /k
]] S 4
- Std. S
2-bit L
adder 0
mux k
AN 1 3
rr¥r r*
5> =
2-bit [omuX K
adder 1 2
Cp Cp=1

Figure 17

A0

L |

T = 15T

B3 B3R r2 M 2r2 133 r2 B3 RBrIRM2 BRI 22 2R

Figure 18

kS

)
- B
=

r4 —1

4|)__
Cc1_d

Figure 19

I
/

-

32
information
bits

=

4
..J o+ Tygctla 01 — K
4 adder |______
Ir= 16 C k
[r,r 0
3//2 Parallel = |C .
r"; ,rz 2-bit
// [adder K
I =16
| Std. C
2-bit P k
"___ adder
k
Figure 20

